Monthly Archives: April 2019

Using Sports Tape & Orthotics

ICB Lower limb biomechanics

Patients often ask if sports tape can be used to treat a condition, in place of customised foot orthotics. Sometimes this arises out of financial considerations, and other times because they do not understand the specific roll that a taping procedure plays when treating lower limb biomechanical dysfunction.

 

View ICB Products

Practitioners can incorporate taping therapy into their treatment regimes to help patients who may be unsure of the value of orthotic therapy, and so identify whether orthotic therapy will be of benefit. Sports taping techniques can be incorporated in conjunction with orthotic therapy for a period of time to provide optimum results for the patient.

There are numerous conditions for which a taping procedure can be beneficial such as, Plantar Fasciitis, Osgood Schlatter condition and knee pain (Chrondromalacia Patella syndrome).

Plantar Fasciitis ( heel spur syndrome) is a classic case where the use of a low dye strapping technique is particularly effective as a temporary treatment to ‘mimic’ the realignment and support provided by an orthotic device. ‘Low dye’ taping seeks to control the foot and lift the longitudinal arch at the susentacula tali area, to limit excessive calcaneal eversion. The mechanism used controls the rearfoot, lifts the arch, shortens the foot structure, which in turn reduces the elongation of the plantar fascia and tension at the calcaneal attachment.

This method of treatment is very effective, however, the sport tape must be replaced within 3-4 days, some patients have allergic reactions to the zinc oxide tape. Low dye taping is especially effective for long term foot pain sufferers, such as Severs Disease and patients with Achilles Pain, when used in conjunction with an orthotic device.

Strapping with tape

Note in figure 1 (below) how the tape is crossed over in a ‘figure of eight’. Watch the video below for the Low Dye Strapping technique.

Osgood Schlatter Condition is one which responds very quickly to a combination of orthotics (to treat the excessive pronation) and strapping (to reduce tension on the patella tendon). The complicating issue with Osgood Schlatter is external tibial torsion, which should be treated by a practitioner who uses ‘gait plate’ orthotic therapy to correct the torsion. Growth spurts combined with excess pronation, a highly active child and external tibial torsion are all contributing factors.

View ICB Products

Osgood Schlatter

Strapping may be used exclusively to treat to Osgood Schlatter (see fig. 2 ). However the condition and associated pain often appears to ‘flare up’ and so controlling the patients’ biomechanics is essential for effective treatment.

Medial knee pain due to excessive pronation can be assisted using orthotic therapy and the McConnell strapping techniques to stabilise the patella. Internal tibial rotation is associated with excessive pronation, resulting in medial displacement of the patello-femoral path and encouraging lateral displacement of the patella (knee cap). See Fig 3 below This is a common problem and elicits pain and around the medial aspect of the patella, especially with excess loading activities such as running.

Knee Strapping

Internal tibial rotation is also responsible for creating medial collateral strain of the ligamentous structures that wrap around the medial aspect of the knee and lower leg (Cosgarea, 2002).

Excessive pronation causes excessive strain to the medial co-lateral ligament. As a factor of this condition the VMOs weaken and the ITBs tighten, causing external rotation of the femur as a compensation. The patella begins to track on the lateral aspect of the femoral condyle, crepitation and grating feeling is experienced on flexion to extension.

As mentioned strapping using the McConnell technique and strengthening the VMOs is a good treatment regime, however, it will NOT correct the cause of the problem, only assist in pain relief.

Anecdotal studies have supported that in clinical practice, patellar tape provides a useful treatment technique, clinical and research evidence supports relief of pain associated with PFPS (patella femoral pain syndrome)1 The condition and pain will generally recur constantly until the knee has degenerated or become OA (osteoarthritic) – at which time surgical intervention may be needed.

Knee Muscles

Sport Orthotic

A basic requirement to reduce rotational stress on the knee is control and correction of the STJ (Subtalar Joint) and MTJ (Midtarsal Joint) pronation and this can be achieved with an orthotic device that corrects rearfoot pronation.

The most effective biomechanical treatment for medial knee pain, involves the following 3 steps:

1. McConnell Technique – to control lateral/medial patella displacement.

2. Low Dye Strapping – to mimic orthotic treatment. However, low dye is only a temporary treatment.

3. Orthotics to stabilise the structure and limit excess pronation. The orthotics should be moulded to the patient’s NCSP (Neutral Calcaneal Stance Position) Otherwise described as Ideal position.

This action will control STJ and MTJ pronation – making it more effective in producing long term results for the patient.

Knee

View ICB Products

REFERENCES :

1. Patellar taping: is clinical success supported by scientific evidence K. Crossley*, S. M. Cowan*, K. L. Bennell*, J. McConnell. Manual Therapy (2000) 5(3), 142-150

COSGAREA, A.J., BROWNE, J.A., KIM, T.K. & MCFARLANE, E.G. (2002) Evaluation and Management of the Unstable Pa-tella, The Physician and Sports Medicine, 30, 10

ICB Lower Limb Biomechanics – Neutral or Ideal Positioning

ICB Lower limb biomechanics

One of the most profound changes to affect the study of foot function was the theory proposed by Root etal (Root 1964, Root et al 1971) which outlined the concept of a measurable neutral position about which the foot was supposed to function.1



There has been much conjecture about the relevance of Neutral Calcaneal Stance position (NCSP), other-wise described as a patients unique Ideal position. However, still today the ‘Root Theory’ has stood the test of time albeit with alternate theories and modifications to ensure that the process works in a clinical setting.

The Foot Posture Index (FPI) 2 is useful in establishing several methodology’s to manipulate the weight bearing foot into a posture that can be considered functionally neutral and quantify the frontal plane position of the foot.3

For clinicians the challenge is to find a fast, effective method of establishing the patients position in which, they are neither excessively pronated or excessively supinated otherwise defined as NCSP or Ideal as opposed to a resting Calcaneal Stance position RCSP. Using of the FPI in a clinical setting could be quite cumbersome as the 6 steps need to be correlated with each other and the time taken could be excessive and highly inefficient.

Most practitioners using orthotic therapy around the world have de-faulted to the Talo navicular method which, at times, made finding congruency difficult due to a lateral osseous exostosis on the talar head often being present Equal ness or congruency is not instance easy to establish.

Therefore a method which can use the FPI and additional method combining together to overcome any anatomical variances such as the ICB Anterior Line Method (ICBAAM) is of particular benefit.

The ICB AAM uses the Talo Navicular reference points aligning the tibia with the 2nd MTPJ by drawing an anterior line.

The Talo Navicular method uses talar head congruency to establish the neutral position.
View ICB Products

FIG 1

The TN Reference points can be established by placing the foot in a dorsiflexed position4

It may be useful in some cases to move the foot into inversion and eversion while palpating for the talar head This way both eversion and inversion can be clearly identified.

In the resting position the Anterior line will deviate medially indicating that pronation is evident and Laterally if the foot is supinating.

TN reference points

TN reference points are exposed when the foot is dorsiflexed with the heel on the ground.

At rest the tibial varum alignment aligns with the 1stMTPJ on a excessively pronated foot.

The Rearfoot position can also assist in establishing neutral in conjunction with ICB AAM.

There is a direct correlation between rearfoot alignment and anterior alignment position.
Calcaneal bisection

View ICB Products

When finding the tibial varum angle the practitioner is conceptualising where the Tibia sits within the soft tissue and the same process is undertaken when bisecting the calcaneus.

The ICB Anterior Alignment Method is especially useful when moulding and fitting orthotics as it provides reference points that can be clearly identified when wearing shoes and socks.

Fitting Orthotics

Using the ICB Anterior Alignment Method ICB AAM to establish neutral is also useful when taking a foam box casts for custom made orthotics.

Neutral Foot Position

NB: every patients neutral may be different, use the established parameters to identify the patients ideal position. and compare with their resting position.

View ICB Products
REFERENCES:
1. Merrimans Assessment of the lower Limb 3rd ed p289
2. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index An-thony C. Redmond a,b,*, Jack Crosbie c , Robert A. Ouvrier b 10 May 2005
3. Merrimans Assessment of the lower Limb 3rd ed p290
4. The Orthotic Solution p 29
Michaud T.C., 1993 Foot Orthoses and Other Forms of Conserva-tive Foot Care. Williams and Wilkins, Baltimore, pp.93-105.
Root M L, Orien W P, Weed J H., 1977 Normal and Abnormal Func-tion of the Foot. Clinical Biomechanics Vol 2, Los Angeles
Valmassy, R.L.. Pathomechanics of Lower Extremity Function. Clinical Biomechanics of the Lower Extremity. Mosby, St Louis.

Treating Supinated Feet with Orthotics

ICB Lower limb biomechanics

Generally rearfoot supination, inverted position of the calcanaeus relative to subtalar joint neutral or ideal positioning, is not that common and different professions describe it with different terminology eg. Rearfoot valgus is also a term to describe a weight bear-ing/compensated position of the rearfoot. ‘Closed kinetic chain supination consists of calcaneal inversion with talar head abduction and dorsiflexion.’1 it is the collective term for plantarflexion, inversion and adduction of the foot apparatus.2 which is happening around the Sub Talar Joint.



View ICB Products

Supinated Foot

It is correct to say that supination is a fundamental action in the gait cycle and a necessary element, however, in this newsletter we are considering excessive supination or the problematic ‘supinated foot’ structure. Supination of the foot occurs at heel strike to mid stance and then again at toe off and so addressing extended supination and its consequences is important, albeit that the supinated foot occurs in only approximately 8-9% of the population.

Often the supinated foot will present with high arch3 or a more rigid foot structures and upon assessment may exhibit a forefoot valgus deformity.
Supinated Foot

Patients suffering this biomechanical anomaly will usually wear the lateral aspect of their shoes and experience lateral side joint pain resulting from excessive stress placed on the joints due to the excessive lateral pressure as seen in the Image opposite .

Asessing FFT VL

Examining the wear pattern on the patients shoes is a valuable assessment tool as it can indicate the way the body addresses the biomechanical anomaly within the gait cycle, pressure points and wear a tear patterns are often evident.
Supinated Foot

Note: the Lateral wear pattern, in this instance a pattern under the 1st MTPJ indicating a plantarflexed 1st condition.

Supinated foot 4

Unilateral supination may be a compensation to structural leg length discrepancy in which the SHORT leg develops a supinated or excessively inverted position to raise the pelvic alignment, in this instance assessing structural leg length is important.

Use a methodology that you are familiar and comfortable with to assist in assessing structural Leg Length.

Leg Length Discrepancy

When assessing for ideal or neutral position using the ICB AAM method the foot may need to be everted or moved medially (pronated) to align the 3 reference points of the anterior line.

View ICB Products
Supinated Foot

Anterior view Supinated with ICB AAM line

When a Forefoot Valgus deformity is present the use of a fore-foot wedge addition, will encourage the straightening of the reference lines to enable the practitioner to place the foot into subtalar joint neutral/ideal (STJN).

Most of the ‘off the shelf’ styled or premade orthotics are designed to be anti pronating devices, when treating a supinator these devices will need to be adjusted and modified to suit the supinating patient. Rearfoot supination, if mobile, may be treated with a lateral eversion wedge/ addition, however, mid foot and forefoot inversion (supination) can be treated with forefoot post-ing and lateral eversion ramps.

View ICB Products

Inversion ramp

Often uncompensated (rigid) rearfoot supinators will exhibit a plantar flexed 1st MTPJ as compensation, seeking to enable the 1st MTPJ to make ground contact for toe off phase of gait and will require a 1st MTPJ cut away of deflection to accommodate the plantarflexed 1st.

Supinators will not require rigid or firm EVA styled products, rather mid density or softer materials are best and the orthotic device should be moulded well into the arch.

Generally a curved last shoe is designed for the supinated styled foot. Pronators will require a straight or semi curved last shoe.

Stabilising the forefoot will reduce the inclination to excessively invert or supinate the foot thereby reducing inversion sprain condition.

ICB recommends DUAL Density Sports or Blue mid density styles moulded well into the patients arch.

View ICB Products

REFERENCE :
1.Ronald L Valmassy Clinical biomechanics of the lower ex-tremities 1996 p 12
2.Merriman’s Assessment of the lower limb 3rd Ed 2009 p228
3.Katherine E Morrison, MS, ATC and Thomas W Kaminski, PhD, ATC, FACSM Foot Characteristics in Association With Inversion Ankle Injury J Athl Train. 2007 Jan-Mar; 42(1): 135–142

Leg Length Discrepancy

ICB Lower limb biomechanics

Leg length inequality and the pathogenesis or the origin of the condition, is and will always be, a controversial subject. There is not enough space to conduct a debate on the treatment, origin and possible associated compensatory mechanisms that may arise when we examine the topic. Also a wide variance of opinion exists on the significance of structural leg length and the various methods for measurement.

Many texts define minor structural leg length discrepancy as, less than 2 cm of difference. Other studies have suggested that, 40-70% of the population have at least some degree of LLD1, larger differences also appear in .001% (1:1000)of the population. From ICB’s perspective in dealing with Lower Limb Biomechanics, a 2cm structural difference is, rather than being minor, quite a significant amount and should be treated mechanically.

View ICB Products

Leg length discrepancy or anisomelia, meaning a difference in length between paired legs, can broadly be categorised into two types:

1. Structural leg length difference, a difference in the long bone measurement of the leg. Its root cause can be illness, hereditary or trauma-related. The etiological factors involved in the causative process can be numerous such as: Idiopathic developmental abnormalities, fracture, trauma to the epiphyseal endplate prior to skeletal maturity, degenerative disorders, Perthes disease, cancer or neoplastic changes and Infections to name a few.

2. Functional differences can be more difficult to identify and treat as the etiological factors can be difficult to diagnose, e.g: body compensation associated with trauma, shortening of soft tissues, joint contractures, ligamentous laxity, axial misalignments, foot biomechanics, such as, unilateral excessive pronation, pelvic rotation and pelvic flare to name a few.

Often structural short leg syndrome is a commonly un-recognised condition that often goes untreated. It can be argued that even small discrepancies of only 4mm, if uncorrected, may over time set off a chain reaction of symptomology throughout the body.

There are 3 types of short leg issues that have been attributed as causative factors: inherited biomechanics, postural habits and or trauma:

1. Structural Short Leg: when the measurement from the head of the femur to the lateral or medial Malleolus measures shorter on one side than the other.

2. Functional Short Leg: when the measurement from the 2 same reference points are equal on both sides, but there still appears to be a short leg – usually due to a twist in the pelvis.

3. Combination of Structural and Functional Short Leg.

Symptoms
Common symptoms may include:

• Neck and shoulder pain
• Back ache & Hip pain
• Foot pain, Ankle pain, Knee pain.

Muscular, Vascular and Neurological systems may also be affected. Osteoarthritis in the joints, and Scoliosis (including idiopathic’) are classic indicators of a leg length discrepancy and or twist in the pelvis.

View ICB Products

Biomechanical Aetiology

Leg Length Discrepancy

Anecdotal observation indicates that 80% of compensations is excessive long leg pronation. If the pelvis does not level as a result of the excessive pronation, the pelvis may twist or drop to one side – causing either a scoliosis or prolapse of the vertebral discs. Unilateral tightness in the gluteal muscles may occur with posterior pelvic tilt and rotation, which in the case of a functional short leg has the effect of rotating the pelvis posteriorly-effectively causing increased rotation of the spine at L1 to L5. A tendency to repeatedly pull (overstretch) the same muscles even though it has been given sufficient time to heal may occur.

A unilateral bunion is often associated with a leg length discrepancy. As the body excessively pronates to provide long leg compensation (to level the pelvis), this predisposes the longer leg to the formation of a HAV or bunion 2. Thus when bilateral HAV is evident and there is unequal Bunion growth, it can be deduced that a longer leg may be evident.

Assessment

Although some Physicians still use measurement methods such as Knee height and tape measure. Current research indicates that newer manual techniques and radiographic analysis are preferred over the old tape measure method.

Leg Length Discrepancy

There are many ways to measure leg length, 2 of the most reliable methods are:

1. CT Scanogram: a radiographic technique that measures the actual length of the tibia and fibula bones. Point of failure in this method could be the inability of the radiologist to match the measurement reference points, however, this is not usually an issue.

2. Supine medial malleoli asymmetry (manual) (Fig : 4): A technique which is becoming more common and certainly more popular is a process that osteopath Gary Fryer at RMIT University Melbourne 20053 known as The Palpation for Supine Medial Malleoli Asymmetry Technique. This method is we believe, quick to perform and has demonstrated both a high intra-examiner and inter-examiner reliability. The trial concluded that Intra-examiner and inter-examiner reliability was almost perfect following subject selection for malleoli asymmetry, suggesting that clinicians can reliably detect medial malleoli asymmetries of greater than approximately 4 mm difference. The patient is placed in the supine position.

The Practitioner balances the hips and pelvis, then marking the inferior aspect of the medial malleolus with a pen. Align the malleoli and rub together to compare the pen line markings, checking for discrepancy between the two lines.

Leg Length Discrepancy

View ICB Products

Treatment

In the case of a structural leg length discrepancy, a heel lift alone to the short leg may not provide the solution for the patient, as the long leg will continue to pronate and cause upper body imbalance and compensations. Correction to the longitudinal arch of both feet and their biomechanics by prescribing an orthotic device is essential.

Heel Lift on ICB orthotic

The orthotic device will ensure the correction and realignment of the feet, and the addition of a heel lift on the shorter leg will prevent jamming in the hip of the longer leg, and prevent upper body compensations and resultant pain.

Generally 80-85% of compensatory action will be excessive long leg pronation, other compensations may occur such as : Long leg knee flexion, short leg supination, genu recurvatum or knee hyperextension as a means to adjust the pelvic alignment.

References
1. Woerman AL, Binder-MacLeod SA. Leg length discrepancy assessment: accuracy and precision in five clinical methods of evaluation. J. OrthopSports Phys Ther 1984;5:230-8.
2. Neale’s disorder of the foot 8th edition 2010 p103
3. Gary Fryer 2005 : Factors affecting the intra-examiner and inter-examiner reliability of palpation for supine medial malleoli asymmetry.

View ICB Products

Medial Knee Pain

ICB Lower limb biomechanics

Knee pain is a common condition experienced by people of all ages, and levels of activity. Knee pain is a problem that can be experienced due to many contributing factors, Including: increased Q-angle, genu-valgum and genuvarum, muscle tightening through the gastrocnemius, iliotibial band and VMOs, hyper-extension of the knee and tibial rotation and torsion, bakers cyst, connective tissue disorders such as lupus .


View ICB Products

When discussing knee pain, terms such as ‘Retro Patella pain’, ‘Patella Femoral Dysfunction’, ‘Medial Compartment Syndrome’ or ‘Ilio Tibial Band Friction Syndrome’, come to mind. However, from ICB’s experience, these conditions are simply descriptions of knee pain. Knee can be affected by trauma, foot mechanics or issues at the hip. Trauma issues are not discussed in this article , rather we focus on the other two areas, both of which can affect the operation of the knee.

Medial Knee Pain

If the patient’s pain is idiopathic (i.e.. no known cause or trauma), excessive pronation and excessive supination may constitute the underlying cause of the problem – as outlined by Michaud, 1997 1. Michaud states that for every 1˚ of pronation the tibia internally rotates 1˚, which in turn impacts on the knee joint, as it takes the stress that is generated by the tibial rotation.

Tibial rotation describes the rotation of the tibial shaft and is different to tibial torsion. Tibial Torsion is a twisting in the osseous structure of the tibial shaft. Internal Tibial rotation is associated with excessive pronation, medially displacing the patello femoral path and encouraging lateral displacement of the patella. Internal Tibial Rotation is a common problem and elicits pain under and around the medial aspect of the patella – especially with excess loading activities such as running and jumping.

Knee Diagram

 

Internal tibial rotation is able to con-tribute to medial collateral strain on the ligament structures that wrap around the medial aspect of the knee and lower leg (Cosgarea, 2002)

To treat pain associated with internal tibial rotation, give VMO strengthening exercises , knee strapping, and other strengthening exercises – all of these are valuable treatment options, however, these methods, no matter how beneficial, only treat the symptoms. Controlling and stabilising the foundation is a key to successful treatment of medial knee pain.

CAUSES OF MEDIAL KNEE PAIN

A major cause of medial knee pain is excessive pronation which causes the medial collateral ligament to elongate resulting in the weakening of the VMOs and the ITBs tightening. A con-sequence of this action is external rotation of the femur as compensation. As the ITB and piriformis muscles compensate to reduce medial rotation, the patella begins to track on the lateral aspect of the femoral condyle and a grinding and crackling is felt on the flexion to extension.

Strapping, using the McConnell technique and strengthening VMOs is a good treatment method, however it will not correct the problem – strapping will only assist in pain relief, and the condition will constantly re-occur until the knee has degenerated or become Osteo-Arthritic, and may eventually require surgical intervention.

A basic requirement to reduce rotational stress on the knee is STJ and MTJ control and correction.

View ICB Products

BIOMECHANICAL TREATMENT

• McConnell strapping technique to control lateral/medial patella displacement, in conjunction with low dye strap-ping to mimic the support and control of an orthotic de-vice. Low dye strapping, however, is only a temporary treatment.

Low Dye taping to imitate wearing orthotics.

• ICB Orthotics moulded to the patient’s Ideal/NCSP (Neutral Calcaneal Stance Position) to control abnormal STJ and MTJ pronation, by aligning the calcaneus with the lower 1/3 of the tibia and limiting the joint to its original function as a hinge joint.

Calcaneal bisection

Rearfoot correction using ICB Orthotic with intrinsic 5° Rearfoot varus.

• Strengthening VMO exercises whilst correcting the feet with orthotics, and stretching the ITBs.

• Mobilisation of the knee joint may also be useful.

• Acupuncture can be performed at the point of pain to aid pain relief.

• Runners may require increased rearfoot varus wedgeing to compensate for the higher tibial varum angle at heel strike, during the running cycle.

View ICB Products

REFERENCES:
1 MICHAUD, T.C. (1997) Foot Orthoses and Other Forms of Conservative Foot Care, p10
General References
COSGAREA, A.J., BROWNE, J.A., KIM, T.K. & MCFARLANE, E.G. (2002) Evaluation and Management of the Unstable Patella, The Physician and Sports Medicine, 30, 10
MCCONNELL, J., & COOK, J. (2001) Anterior Knee Pain, Clinical Sports Medicine, 2nd Edition, [http://www.clinicalsportsmedicine.com/ chapters/24a.htm]
PETERSON, L., & RENSTROM, P. (1986) Sports Injuries: Their Prevention and Treatment, Sydney: Methuen Australia